Adjustable discriminator cleans up signal noise by Dennis D. Barber University of Houston, Houston, Texas Telemetry signals or other logic signals often pick up a lot of extra noise during transmission. But they can easily be cleaned up at the receiving end by a discriminator circuit having adjustable hysteresis. The voltage discriminator shown in the figure can clean up signals containing as much as 70% noise without the need to alter the signal amplitude or dc level. The input to the amplifier that serves as the voltage-discriminator (amplifier A_4) is kept constant at 5 volts peak-to-peak. But the signal to be conditioned, the one at the input to the circuit, does not have to be critically maintained or its level known precisely. Amplifier A₁ is gain-controlled, with field-effect tran- sistor Q_1 acting as the gain-control element. This FET, which functions as a voltage-variable resistor, is controlled by amplifiers A_2 and A_3 . Amplifier A_4 is the voltage-discriminator stage that provides the adjustable hysteresis through its variable regenerative feedback. Before the capacitively coupled input signal goes positive or negative, the output of amplifier A_1 may be treated as if it were at ground. The gain of amplifier A_1 is then at its maximum since the inputs to amplifiers A_2 and A_3 are below (in absolute magnitude) their respective reference voltages. The output of each amplifier is now positive, and diodes D_1 and D_2 are back-biased, which allows transistor Q_1 to turn fully on. If the input signal goes positive, the output of A_1 will move towards the positive power-supply level. When it reaches the reference voltage of A_2 , the output of A_2 quickly swings negative, turning transistor Q_1 partially off and thus lowering the gain of A_1 . The output of A_1 is held at the positive reference voltage until this reference level is greater than the input voltage multiplied by the maximum gain of A_1 . At this point, the input voltage is only a few millivolts above ground. **Pulling the data out of the noise.** Adjustable-hysteresis voltage discriminator makes significant improvement in signal-to-noise ratios, as can be seen from the scope traces. The level of regenerative feedback of amplifier A₁, the voltage-discriminator stage, is adjusted to provide optimum noise immunity. The gain of amplifier A₁ is controlled by transistor Q₁, which is operated as a voltage-variable resistor.